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Introduction



The Basic Idea of NCG

The goal - to construct a geometric approach to including noncommutativity (as 
seen in quantum physics, QFT, etc.) into a given physical theory based on 
geometry (e.g. Einstein Gravity) .

A fundamental motivation for noncommuting coordinates is the DFR paradox - 
by marrying only the essential assumptions of QFT and GR, we get relations  of 
the type:



Some examples where this might be 
used:
● Effective models, e.g. electrons in a 2-dimensional material through the Moyal 

approach:  
● Quantizing a theory via *-products:

● Constructing theories (such as the Standard Model) on curved backgrounds 
(on equal footing with gravity)

● Constructing new theories of say quantum gravity



The Road to 
Noncommutative 
Geometry



We usually think of the world around us through observables, i.e. functions on a 
manifold and it’s taken for granted that we can use these observables to obtain all 
the information of the space we’re living in.

This seems to imply that, knowing the physical laws, there exists some direct 
correspondence between the algebra of functions on a manifold and the 
topological and differentiable structure of the manifold itself.

This kind of thought process was formalized by Connes in the 1980s into what is 
called the Spectral Triple: 

which provides a piece by piece, mathematically formal relation between a 
Riemannian manifold structure and an abstract algebra.



The Spectral Triple

- an abstract algebra, corresponding to the algebra of functions 
on the manifold

- a Hilbert space on which the above algebra is faithfully 
represented

- the Dirac operator, representing the analogue of the Laplace 
operator, which determines the geometrical structure on the 
manifold



The Topological Equivalence

At this level, we only need the algebra and the Hilbert space               to guarantee 
the correspondence by means of two theorems:

However, one should note  that if         was to be made noncommutative, as an 
arbitrary algebra can be, it would become unclear what “noncommutative 
topological space” this would correspond to.



Differentiable Structure

A construction of vector fields algebraically comes down to noticing what the 
vector fields look like on manifolds and requiring an analogous structure on the 
algebra: 

Linearity & Leibniz Rule

As the space of derivations of an algebra satisfy exactly these rules, they can be 
taken to be equivalent to vector fields.

Forms are then obtained as the graded differential algebra of duals to vector 
fields.



Geometry
This is where the Dirac operator          first comes in. Taking it to be self-adjoint 
as well as having a compact resolvent (i.e. the eigenvalues behave in some nice 
way) implies a lot of properties, among other things:

 It can be proven, as a result of Kantorovich transportation theory, that the 
analogue of the manifold distance is then:

This makes sense as the Dirac operator is constructed as the square root of the 
Laplace which is essentially the metric tensor. Analogously to the standard 
Klein-Gordon vs Dirac equation thing, it seems plausible that the Dirac is then 
more general than the Laplace / metric tensor.



The Topology-Algebra Dictionary
In summary, this comes down to the following correspondence between the 
topological and the algebraic:



Given a Riemannian manifold               one can prescribe a “canonical Spectral 
Triple”                     as follows: 

● Take as the algebra        the algebra of         -functions on the manifold 
● The Hilbert space        is the space of square integrable sections of the 

spinor bundle on          - 
● The Dirac operator        as the Levi-Civita connection lifted to the spinor 

bundle over        .

Such a spectral triple: 

then contains all the same information as a Riemannian manifold             .

Next we might ask if we can go the other way; is it the case that given a spectral 
triple                   we can find a Riemannian manifold it corresponds to.                 



The Connes Reconstruction Theorem
In recent years (2004.) Connes published the paper “On The Spectral 
Characterization of Manifolds”, proving the equivalence (if and only if) between 
compact oriented smooth Riemannian manifolds and commutative spectral triples 
which generalizes the Gelfand-Naimark theorems from earlier.

The idea of talking about noncommutative spaces relies on the existence of the 
above equivalence - Riemannian manifolds are equivalent to commutative spectral 
triples. Considering this, one could take a noncommutative spectral triple and claim 
that it is the correct extension of a Riemannian manifold to a “noncommutative” 
one. Doing calculations on such a spectral triple would then correspond to doing 
calculations on a “noncommutative manifold”.



From the Spectral Triple 
to the Spectral Action



From the Spectral Triple to the Action
Obtaining physical laws usually stems from an action principle loosely constructed 
as follows:

● Identify the symmetries of the physics
● Construct all scalar quantities that respect said symmetries
● Add them all up and call this the action
● Apply the variational principle to the action and obtain equations of motion

Now, of course what one has at hand when working with Spectral Triples is a 
Hilbert space (on which the algebra is represented) with its inner product and the 
Dirac operator on said Hilbert space and it remains to be seen what scalars can be 
made using this construction.



The Spectral Action

The Spectral action, as prescribed by Connes then takes the form:



Almost commutative 
Spectral Triples and the 
Standard Model 



The Standard Model + GR
The way to proceed is to construct what is known as an almost-commutative 
spectral triple, taking the algebra:

We want the symmetry group: 

as this is exactly the standard model..

The finite space           thus has to be picked to reproduce the correct gauge 
symmetries of the standard model and the choice turns out to be: 



The Spectral Action with the product Dirac:

then produces two parts:

● The fermionic Dirac term                          which includes fermion kinetic terms, 
Yukawa couplings and fermion-gauge boson interactions

● The bosonic action:

containing everything from the Einstein-Hilbert action with cosmological 
constant, Weyl Gravity, the bosonic Standard Model action and some additional 
terms among which is the Higgs, appearing on its own, without being put in by 
hand.





The Normalized Action:



Thank you!


